Let's do a few examples
Ex: Find the Euler Characteristic of a cube.

Sol:

$$
\begin{gathered}
\text { vertices }=8 \\
\text { edges }=12 \\
\text { faces }=6 \\
x(\text { cube })=6-12+8=2
\end{gathered}
$$

Ex: Find the Euler characteristic of a torus.
Sol: The torus is given by

$$
\begin{aligned}
& \text { vertices }=1 \\
& \text { edges }=2 \\
& \text { faces }=1
\end{aligned}
$$

There is one face (the inside of the square). There are only two edges since they get identified in pairs (a\&b). To check the \# of vertices, start at one of them and

So, the Euler characteristic is

$$
x(\pi)=1-2+1=0
$$

What changes if we add an edge?

$$
\begin{aligned}
& f a c e s=2 \\
& \text { edges }=3 \\
& \text { vertices }=1
\end{aligned}
$$

The edge c divide the original face into two new ones. The vertices have not changed. So, doing the Euler characteristic again:

$$
x(\pi)=2-3+1=0 .
$$

still zero!
This is a manifestation of the following theorem.

Theorem : For a surface \sum, the Euler characteristic $X(\Sigma)$ does not depend on the pattern of polygons drawn on Σ.

Earlier, we saw $X($ cube $)=2$.
Ex: Find the Euler characteristic of the tetrahedron.
Sol:

$$
\begin{aligned}
& V=4 \\
& E=6 \\
& F=4
\end{aligned}
$$

$$
x(\text { tetrahedron })=4-6+4=2
$$

Ex: Find $X\left(S^{2}\right)$ (the sphere).
Sol: There's a whole variety of ways to do This one: soccer ball pattern $\left(\begin{array}{l}32-90+60=2) \\ \text { porter } \\ \text { pore }\end{array}\right)$ football pattern $(4-4+2=2)$ basketball pattern $(8-12+6=2)$

All give that $X\left(s^{2}\right)=2$.
Notice that all of these "spheretike" or hole-less objects have Euler characteristic $=2$.
Euler's Formula
Any convex polyhedron satisfies the formula

$$
V-E+F=2
$$

(A polyhedron is convex if any two points in it can be connected with a line that stays inside the polyhedron.)
$\left[\begin{array}{l}\text { This condition "convex polyhedron" can be relaxed } \\ \text { to "surface homeomorphic to a sphere". }\end{array}\right]$
proof: We will prove this alongside an example for clarity. Let's call our polyhedron P.
pf:
(1) Remove 1 face from the polyhedron.
(2) Flatten the rest into the plane by stretching the boundary of the removed face.
(3) Add edges to divide all faces into triangles remember, this doesn't affect the Euler characteritit)
To do this, choose two vertices of a face which are not connected by an edge and add an edge between them.

Ex: Cube

(1)

(2)

(3)

(4) Perform the following two operations as necessary to leave only a triangle remaining for, you can go all the way to a point, it you like):
(i) Remove an exterior edge and the face it is an edge of. [Since we remove one edge \& one face, the number $V-E+F$ does not change.]
(ii) Remove an edge not bounding a triangle and the loose vertex at the end of it. [Again, since we're removing one edge and one vertex, the number $V-F+F$ does not change.]

\downarrow i

\downarrow (iii)

Once we're at a triangle we have

$$
X(\swarrow)=V-E+F=3-3+1=1
$$

But, remember, we deleted a face at the beginning, so

$$
X(P)=X(\Lambda)+1=2
$$

We say that a polyhedron is regular if all faces are congruent regular polygons. A polyhedron is a Platonic solid if it is convex and regular.
Theorem. There are exactly 5 Platonic solids. proof Let P be a Platonic solid. Then, Euler's polyhedron formula tells us

$$
X(P)=V-E+F=2
$$

Suppose that the faces of P have n sides and that c faces meet at every vertex.

